skip to main content


Search for: All records

Creators/Authors contains: "Shah, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, there have been phenomenal increases in Artificial Intelligence and Machine Learning that require data collection, mining and using data sets to teach computers certain things to learn, analyze image and speech recognition. Machine Learning tasks require a lot of computing power to carry out numerous calculations. Therefore, most servers are powered by Graphics Processing Units (GPUs) instead of traditional CPUs. GPUs provide more computational throughput per dollar spent than traditional CPUs. Open Compute Servers forum has introduced the state-of-the-art machine learning servers “Big Sur” recently. Big Sur unit consists of 4OU (OpenU) chassis housing eight NVidia Tesla M40 GPUs and two CPUs along with SSD storage and hot-swappable fans at the rear. Management of the airflow is a critical requirement in the implementation of air cooling for rack mount servers to ensure that all components, especially critical devices such as CPUs and GPUs, receive adequate flow as per requirement. In addition, component locations within the chassis play a vital role in the passage of airflow and affect the overall system resistance. In this paper, sizeable improvement in chassis ducting is targeted to counteract effects of air diffusion at the rear of air flow duct in “Big Sur” Open Compute machine learning server wherein GPUs are located directly downstream from CPUs. A CFD simulation of the detailed server model is performed with the objective of understanding the effect of air flow bypass on GPU die temperatures and fan power consumption. The cumulative effect was studied by simulations to see improvements in fan power consumption by the server. The reduction in acoustics noise levels caused by server fans is also discussed. 
    more » « less
  2. Abstract

    We conducted synoptic surveys over three seasons in one year to evaluate the variability in water sources and geochemistry of an urban river with complex water infrastructure in the state of Utah. Using stable isotopes of river water (δ18O andδ2H) within a Bayesian mixing model framework and a separate hydrologic mass balance approach, we quantified both the proportional inputs and magnitude of discharge associated with “natural” (lake, groundwater, and tributary inputs) and “engineered” (effluent and canal inflows) sources. The relative importance of these major contributors to streamflow varied both spatially and seasonally. Spatiotemporal patterns of dissolved oxygen, temperature, pH, calcium, chloride, nitrate, and orthophosphate indicated seasonal shifts in dominant sources of river water played an important role in determining water quality. We show although urban rivers are clearly influenced by novel water sources created by water infrastructure, they continue to reflect the imprint of “natural” water sources, including diffuse groundwater. Resource managers thus may need to account for the quantity of both surface waters and also historically overlooked groundwater inputs to address water quality concerns in urban rivers.

     
    more » « less